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ABSTRACT

A representative formulation of the one strip blunt body integral method
is treated in sufficient detail to delineate the numerical difficulties
involved in its mechanization as well as to identify limitations in its
application. While the integration of the governing cystem of equations
for general body shapes camprises a two-point boundary velue problem,

the particular case of a flat-faced cylinder is shown to reduce to a pro-
cedure involving a single integration. An investigation is made of the
extent to which conservation laws are satisfied throughout the shock
layer region. Significant deviations are found to exist depending upon
the method used for camputing the distribution of flow properties across
the shock layer. A procedure has been chosen which insures compatible
tangential and normal flow property gradients at the shock and body while
significantly reducing mass and momentum defects in most instances. Com-
puted flow field date are presented for spheres and flat-faced cylinders.
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NOMENCLATURE

Speed of sound

Enthalpy

e

Mach number

Pressure

Body radius of curvature

Shock radius of curvature

Gas constant

Polar coordinates

Body oriented curvilinear coordinates
Entropy

Velocity component

Total velocity

Cylindrical coordinates

Retio of specific heats, g.f/(_,',.

Distance from body to shock measured normal to
body surface

Shock detachment distance at axis of symmetry
Angle between tengent to body and axis of symmetry

Angle between tengent to streamline and axis of
symmetry



Symbol
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Ve
&

Subsecripts

LU S L R N S

NOMEICIATURE

Mach angle, sin"A—é—

Density
Yl
Angle between tangent to shock and vertical axis

Stream function

Denotes camponent in $ direction
Denotes camponent in /7 direction
Denotes camponent in & direction
Quantity evaluated on body surface
Quantity evaluated on shock wave
Free stream value

Stagnation value

The remaining symbols and subscripts are defined in the text.
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1.

INTRODUCTION

The Dorodnitsyn integral method and its specific applications to mixed
flow problems are well represented in the literature, e.g., Refs. 1
through 7. Owing to the nonlinear nature of the two-point boundary value
problem involved, however, mechanization of the method involves computing
problems of & nonroutine nature. The present report discusses these prob-
lems in detail as they arise in the (Belotserkovskii) one strip approxi-
mation. Further results concerning the basic techniques involved as well
as applications to blunt-nosed configurations are presented. Particular
attention is paid to the determination of flow properties across the
shock layer. For the sake of completeness the development of equations
is presented in detail. The procedure and attendant notation largely
follow Ref. 5.




2. DEVELOPMENT OF EQUATIONS

The equations expressing conservation of mass, momentum and energy for a
perfect, inviscid, non-heat conducting gas are, respectively,

V.Jo7=o (2-1)
(PxV)x) + o VVzv‘-Jb‘ Pép =0 (2-2)
7’7@() =0 , (2-3)
2
vhere £= 4=/ = % ) 0”=é_ﬁ
" 7 7

Velocity, pressure and density have been nondimensionalized through use
of maximum velocity and free stream stagnation pressure and density.
This choice of parameters has particular advantage vhen applied to the
Bernoulli equation.

For general, curvilinear orthosonal coordinates (,4 s X2, ,(_./’) where
) e B k) 40U 1 o) et VaTof 4 4 +TY s the

vector operations are given by

PV = g |5 ) S uh e oK)

7 L 7L 7L
VV:Z/—’;gI‘g/*‘/}&%-ﬁé%gg

¥ ey

b vy
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Since only axisymmetric and two-dimensional configurations will be treated,
a body-oriented curvilinear coordinate system (Fig. 1) is defined such
that

hereB =/

H=/

A /"/ / =0 tvo-dimensional case
J -—

/'a- / axisymmetric case

- X

FIGURE 1




Substituting the Bernoulli equation for the momentum equation in the
S~-direction, the governing system of equations becomes

20o4r) w2 |0+ B)ptr ] = o

Jé_é,«.(/ 2)4 24 _ 4 é//+-4?)'24‘-’-=o

EZ - e

L= PR
V' J-;—’ =/
Let =2

A‘Z-/)

Z=p4
/= Jo%z,‘é/a
7P e
G- £ vt B) oo

=L

vhere Z= (/‘V‘)r/

Using Bqs. (2-6), (2.7) and (2.9), it follows that

pez”

(a)
(v)

(c)

(a)

(e)

(£)

(2-4)

(2-5)

(2-6)

(2-7)

(2-8)

(2-10)

LR |

Rl o W e

Lo |
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A modified continuity equation is obtained through use of Egs. (2-8a),
(2-8b), (2-10) end the relation }/ 17%-0:

523 (/’?) ” a% [(/+ g)/%] =0 (2-11)

In addition, Eqs. (2-4) and (2-5) are combined to obtain a modified momen-

tun equation in "divergence" form.¥

3"—9(”?) w2 [1+B)rH - & =0 (2-12)

Integrand Approximations

Consider an equation given in divergence form, i.e.,

2 &) + L L60) + &) =O

SHOCK

BODY

o
l - X

FIGURE 2

4

*More precisely, one takes //'"_A Eq. (2-5) # df, x Eq. (2-4) and adds and
vy .
subtracts £ ((/* i)/t,o] - g L0 .



Integrating along an arbitrary line in the /)-direction, e.g., across the
shock layer fram the body, /2=& , to the shock, /?=JKs), (Fig. 2), one
obtains

/ or? +/9;o’/9+//:49 =0

If the functions [ » é are approximated in the form

= [©5)+ 2[ L= [e)]

it follows that

’a
i £04,)

Applying Leibnitz's rule, one cbtains an ordinary, first-order differen-
tial equation:

d o I - < =
FIELAIRA AV AS KAS Uk
The integrand approximations employed in the present equations are

' ) )
ré =52 +fﬁ(ff2}"{¢)

rz = 42,2 (z=o) | (2-13)




' , | ey

[y
: [}

S momeal
'

e I e B T

oy pmny

¥

The only formal mathema%ical restriction on the choice of representation
is that the right hand side of Egs. (2-13) be a specified function of /)
containing S-dependent parameters which are evaluated at either the
shock or body (for the one strip approximation). For example, one may
specify

F# =/’[2o « 20£-2))
l /
(@55

In same instances, the specified function of /7 may lead to behavior in
direct contradiction to known inviscid results, e.g., incorrect surface
or shock gradients of flow properties. A more complete discussion of the
validity of the approximeations is given under Inverse Procedures.

Applying the preceding considerations to the modified continuity and
momentum equations yields (noting that bo=z=d):

# c4-72)ed . ] *5 Zr‘/?f 7‘45/// ¢)] +(7*3. J)/’ %=0 (2-14)

(2-15)



Egs. (2-14) and (2-15) may be expressed entirely in terms of the dependent
variables o ’ %o and / through use of the following auxiliary
relationships:

s
5 =4 +/£wé

-

s
_ [t cas =g [ 2+ gr-innicas
2 [ J”‘//j ][gfgw;‘:wf//J

Zé,=/77(<'>< PR NZY)

Y= rTNX 18] # 4 ca0d) cblique
- oy 2{ relations
=% [ 27 @'-/)Maf]

o = = (s )

8 = f—f/- Zorpp (o ,%‘,)
L - L
P

= 'd"'/é
.
L= &) &

)

/(-'0

s\%
i
N
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Expanding Eqs. (2-14) and (2-15) and introducing & geometrical relationship
between d and / » one obtains the governing system of equations in final

form:
Q/-f= /"Ef_ (2-16)
KL Zor(E+f) -
A £ rEHE
= S (2-17)
=4y Pad
¢ 4
dh_ srEZrE L N (2-18)
= Vo,
7
where
£ F 2 /'
ey %//,1%); *‘//f,%,//’;éf)g&’/”f}

Vz)ﬁ,-d—a_/ ,4'2 -f/-f'—; V4 /‘ {
4 7 “047¢ [‘ﬂ’}n—?)*./e ‘”5’]3
v - oL
E<£07 744
L= S T 2 /2 | -f.‘,
4= f//";)f;’z—?[/‘o//‘,/ﬁ)ff-&‘/r’(/-,? 2];&

Vel
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3.

INTEGRATION PROCEDURE

In order to initiate the numerical integration of the system of nonlinear
total differential equations, knowledge of the dependent variables d s
and J\% at the axis (U'=0) is required. The initial values o///o@
and o’aé'o/o(s’ are indeterminate at the axis and require special treat-
ment. One may deduce immediately that /(/0) - 4;(0)-: © ; however, the
shock detachment distance J;o)- € remains unknown and must be deter-
mined from an auxiliary condition. A two-point boundary value problem
therefore exists which must be solved by means of an iterative approach.
(A bar will be used to distinguish the "precise" or final value of € as
opposed to an estimated value during iteration.) The specific approach
taken depends on nose geometry and its influence on the surface velocity
gradient.

A few preliminary remarks are in order before discussing the two types of
integration procedures. Application of the integral method to smooth
bodies (i.e., having continuous slope) is facilitated by the choice of a

natural coordinate system such that the body surface coincides with a
coordinate surfacé. In particular, this choice insures the vanishing of

the normal component of the surface velocity which leads to certain ana-

lytical simplifications. Employing body-oriented orthogonal curvilinear
coordinates, as in the present case, one is only practically limited by

the difficulty in analytically describing arc length, radius, slope and
curvature along the body surface. However, when a slope discontinuity
(convex corner) is encountered, the \§-derivatives became infinite at this
point and an "area of omission" exists which prevents continuation of the
integration. There will be & class of physically meaningful solutions
(for the region from the axis to the corner) obtained when the corner cor-
responds to the body sonic point (Fig. 3).

n
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no solution solution valid for <’ of
FIGURE 3

A mechanism in the integral method which tends to further limit its appli-
cability in certain cases is the direct transmission of body information
to the field immediately normal to the body rather than, for example,
along a characteristic direction in the supersonic regime, e.g., Fig. b,

Zone of Influence

integral method

characteristics

DOOOO 825000 QOOO00 0

AXXRXS :‘0’0’.‘."0‘0 AR AEA KX XRIILEKAXX AN
XSS N XX AN X KA NRIKR N XXX
000000,0.0.07070%0%%4%.9,9,0.0.070%0%%09,4.9.9.9.07076% % %",
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Thus a change in body slope or curvature imposes an immediate perturbation
across the adjoining field. This effect should be less pronounced in the
transonic region where the "normal" mode of information transmittal is
more nearly realized in the physical case. It may be reasoned that this
effect will be suppressed as the integral approximations are improved
through further subdivision of the shock layer. However, by rewriting fq.
(2-16) (which is a geometrical relationship independent of the integral
approximations) as

g—‘é—f - (/- 5:}‘9) ca(6+L),

it can be seen that a curvature discontinuity, e.g., hemisphere-cylinder
which involves & change in curvature from unity to zero, results in a
discontinuity in o4 &5 at the same value of §. Further, this discon-
tinuity is introduced into the expressions for o’/é@ and o’”.'r,/o@
(vhich contain o4 & ). Ceaution must therefore be exercised in interpret-
ing flow field results in cases involving rapid changes in body gecmetry.

7
3.1 Integration Scheme: 0/4&0 (5 Continuous at J=\£

Assuming that the body slope is defined by a continuous and monotonically
decreasing function, both physical and mathematical reasoning calls for
continuity of the surface velocity gradient. The denominator of the ex-
pression for a/lé, /o<$' , however, vanishes identically at the sonic point.
The auxiliary condition for determining & therefore becomes

ME,S) =0

in order that J/_/_/z_z.% be finite. Further justification for this proce-
dure is given in Appendix B.

3.2 Integration Scheme: Koy, K Discontinuous at «f' -y’

When the sonic point is known to coincide with a convex corner, & dis-
continuity in the velocity gradient at this point is consistent with

3

[ "
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requirements of inviscid theory. The previous auwxiliary condition is
therefore no longer valid. One must now vary € until

S =, coRnER

There is a class of bodies for which a definitive choice of method cannot
be made, e.g., sharp-cornered spherical caps. For example, if the sonic
point occurs below a convex corner (on & smocth portion of the body) s 1t
vwill not be possible to attain the requirement < Y= caenase Further,

if the corner lies below the intersection of the "limiting characteristic"#
and the body, the slope discontinuity can in principle still affect the
upstream subsonic and transonic flow regions. In practice, however,

there is no feedback scheme in the one strip integral method to properly
account for this effect.

3.3 Initial Values

3.3.1 Axisyrmetric Case

Direct substitution of the initial values into Egs. (2-16), (2-17) and
(2-18) results in indeterminate (0/0) expressions for (o% ,p.,/o@)‘ and
/4 a/,/r)‘ . Application of L'Hospital's rule yields the proper starting
values,

() - S0-siT 7o) 28]

2+ G~V
o, 24~/ )Me Y. - /‘3) ~4(/- J‘)-i-,‘]
é:/?? ‘23‘11‘;;‘(/‘%;-/)[ x % % ’

*Ref. 13 defines the limiting characteristic as the "locus of points each
of which has only one point of the sonic line in its zone of action.”

b s §
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vhere J’ = - /77['2 * @/-/)M; ]
'?o @"'/)/‘Zf =

Also, by symmetry

@.«Q,o

3.3.2 Two=Dimensional Case

No indeterminateness arises in this case (primarily due to the absence
of the radius terms); therefore , no special formulation is required. It
is interesting to note the relationship existing between two-dimensional
and exisymmetric initial derivatives, i.e.,

(3-1)

@@%) - 24@ (> B z$

20 (},‘ _sq) 4o

/4 2w () » €2 /QZ} (3-2)
<::“~zo o (/' 25;?7)'°kp.za

i

15
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CONVERGENCE SCHEME - SMOOTH BODIES

As indicated earlier, the determination of the correct initial values of
f(0)=(_ involves the expression for the surface velocity gradient which
for convenience may be expressed as 3%,/04' -/\/, /ﬁ . Assuming that
NIE, J’?{)) =.D[\S'?é')] =0, L'Hospital's rule states that if there
exists a neighborhood of =¥ such that &) #O except for J=J'“,
and A/4SY ena DI/J*) exist and do not vanish simultaneously, then
Z//ﬂ ND Z/m/l/ <2’ vhenever the limit on the right exists. How=
ever, in the presenu case, for £ & , N(& ") = /V =0 anda/({ W
displays singular behavior in the neighboirhood of \S‘ . One must also
note that since <~ is a function of &€ , it is in effect a "floating"

singular point.

Basically, the iterative process involves successive refinements of &
such that A * is reduced in magnitude to the extent that the singular
behavior of .V/Z) is confined to & smell neighborhood of ¥ At tnis
point, extrapolation techniques may be applied with little loss in accu=-
racy ir order to continue the integration beyond = N

4.1 Initial Value Sensitivity Study

In order to establish the feasibility of & given prediction-correction
scheme, it is necessary to establish the sensitivity of the integration
to the choice of € . Fram the standpoint of physical measurements, it

is reasonable to expect that a carefully conducted experiment will yield
shock standoff distances (in terms of nose radii) accurate to two signifia
cant figures. In the present integral method, for a given A%, d’ s inte-
grand approximation, etc., there exists a precise value of & = & (vhich,
rounded off to two or three figures, is physically acceptable) which will
cause the solution to ve sufficiently well behaved in the sonic region

S [SPo—

e
i

] ==
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such that the integration may be continued into the supersonic regime.
The degree of precision called for was found to be in excess of eight
decimal places.* Figs. 5 through T explicitly illustrate the behavior

of the most sensitive function involved, 1i.e.,o4} /¢ , / and D, vhen
€ is perturbed plus or minus one digit from a reference value in the
second through eighth decimal places. The saddle point nature of the sin-
gularity at the sonic point mentioned by previous investigators (e.g.,
Ref. 6) is clearly evident. Note that for a poor guess of &€ , the neigh-
borhood for which 0/1/,‘,';,/9@ is significantly affected extends back to the
stagnation point, e.g., for &€~&€ =2.9/, a deviation of approximately
six percent in (olf, /a&), occurs. It should be emphasized that the
figures presented require a knowledge of € and hence represent an

"a posteriori" view of the convergence procedure.

Initial attempts to satisfy the downstream sonic condition consisted of
a series of "single pass" integrations with a running plot being kept of
N ana 8% in order tn make successive predictions of € (Figs. 8 and
9). The stopping conditions were either NV*S0 or QE, >74*, 0<7< /.
Values of AV*and S " were determined by means of extrapolation poly-
nomials (of degree j =2 ) applied successively to JG‘ (to determine
") and A [to determine 'KS") ]. A positive value of A * {ndicated
that &€ was too small while a negative value indicated that € was too
large. It quickly became apparent that a slope prediction technique
alone could not cope with the nonlinear behavior of the functions during
early stages of convergence.

A value of standoff distance established for A/ 'sufficiently small will
be biased by choice of the parameters f and 7 Therefore, if f or 7
are to be changed during the iterative process, a high degree of refine-

ment of € is not called for prior to the change. Regarding the parameter,

*'nx:ls necessitated the use of a double-precision mode of operation (TBM
7090-FORTRAN). Unfortunately, double-precision input and readout capa-
bilities were not available; therefore, the exact number of figures
required beyond eight could not be established.
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, one must obviously compromise between fitting from too far (loss of
accuracy in extra.polation) and fitting from too close (loss of aceuracy
owing to erratic behavior of functions). Further details are given under
Program Degrees of Freedom.

The convergence procedure employed was initiated by establishing upper
end lover limits for & (denoted by &, and &, respectively) and mak-
ing an initial guess for &€ = f%‘_f‘_ . A halving mode was followed until
two values of A/ I“were recorded. Fig. 10 displays the principal opera-
tions involved. The tests indicated were applied after each integration
step. It should be noted that the curve fitting procedure does not always
yield values of d' and AV i: particularly during the early stages of con-
vergence. In addition, for some cambinations of 77 and step size, it is
not possible to attain a value of § Dbetween staticns corresponding to

{4 = 70‘*and %" = Q’*.

*
After obtaining two values of N » & linear prediction was made:

v _ _ ¥ & - &
( - (2 /‘é [/‘//l'_/g'}

If €‘< & ”<€a , & “ vas used ; otherwise it was discarded and the halv-
ing procedure was once again applied. This test suppresses the '"overshoot"
tendency of the slope technique in the nonlinear range. When all 4 'had
the same sign, the two smallest values were used. If both positive and
negative values were available, the smallest value of each was used.

Typically, the reduction of A/ ¥ proceeded slowly until A/ *~ 0//0'3)
owing to the fact that the halving technique was being used in this range.
At this point the linear prediction came into play, resulting in order of
magnitude reductions in a single iteration, e.g., decreases in N 'from
o) //0-91:0 0//0‘9 and fram O//O-‘) to O//O.,‘) for a given itera-
tion have been noted. No particular advantage appears to be gained from

L e e e
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reducing AN velow /O . Figure 11 displeys the variation of the F
versus ' for € =& .

No attempt was made to use polynomial extrapolation formulas of higher
degree for estimating new values of € . Cne disadvantage of increasing
the degree is the associated requirement for more values of A ‘,' i.e.,

polynamiel of degree /77 requires /?7#/ determining conditions.

For a given body shape and specific heat ratio, if a large number of runs
corresponding to different values of /1/‘, are to be made, one may expedite
matters through use of polynomials of the form

& _ G
=X in-r)? s

using the first few cases to determine the constants. Using a sixth
degree polynamial, it was found that five reliable figures for € could

be recovered, therefore reducing the number of iterations required.

L.2 Program Degrees of Freedom

Mechanization of the integral method introduces additional parameters
vhich influence the numerical results. Their values are set primarily by
an empirical approach using the computer as an experimental device. A
brief discussion of their influence is given below. The data are taken
from sphere calculations (d’ =/) .

- »
Integration step size: Table 1 indicates the AS effect on € and S
for a fixed stopping condition J,,‘g .95@”". The fourth-order Runge-

Kutta method of integration was employed in campiling these results.
Use of other numerical integration schemes was not considered in the
present investigation.
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AS M =3 No=6 M= 9

.005 21592940 14823571 13692880

€ | .01 .21592940 .14823570 .13692880
.02 21592943 14823565 .13692875

. .005 .T6T11752 .T2000300 .T1176106
S| .01 76712370 +T1997798 -T1176337
.02 .T6713051 .71991991 .T1171965

TABLE 1

Near-sonic stopping condition: For those cases where A/ ; O, a criterion
is required to stop the integration procedure short of the sonic point
(defined by D(S")=0). One may fix this point in terms of a physical
location &, < * or mey specify it in terms of & certain percentage, 7 ,
of the sonic velocity. Although the former method requires an approximate
knowledge of S * » & "linearizing" effect is introduced (see Figs. 12 and
13) with reference to the variation of V* versus € . Figs. 14 through
16 illustrate the influence of 4. on the standoff distance and sonic
point location as well as the quantities & , ol fs / , o;é//o(s , 4,
o/[/aé' eveluated at the downstream location § =/ . The latter plots are
intended to indicate the increase in accuracy gained by fitting from a
point closer to the sonic point. An asymptotic behavior is indicated but
camputational restrictions prevent determination of the final asymptotic
value. The stopping condition 450 2 70 * was found to be most convenient
from a computing standpoint in spite of the disadvantage of fitting fram
different terminal values of S [depending upon the value of standoff
distance chosen which in turn controls the functional behavior of 4,; c3)].
More specifically, & randamness is introduced in the function A/ '(6)
vhich can seriously impeir slope prediction techniques. In addition, a
A\S influence is introduced unless a local adjustment of step size is
made such that J‘;‘ = ‘70” precisely at the end of a given step. Table 2
indicates the effect of 77 on & and S,
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Degree of curve fit:

cubic expressions.

Applications).

7 Mp=3 Mp= 6 Mu=9
975 21592946 14823571 .13692880
E | .95 .21592940 .14823570 .13692880
.90 21592835 14823543 13692869
Y 975 .T6T1T822 . T2006109 71182377
S 9 76712370 . T199TT98 .TALT63TT
.90 . 76682185 .71952513 .T2135662

TABLE 2

A quadratic expression was used for determining
both " and A/% Other investigators (e.gz., Ref. T) have employed

A parametric study of the influence of the degree

of the curve was not made for smooth bodies; however, results pertaining
to this topic are given later for the flat-faced cylinder case (see

rl:
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CONVERGENCE SCHEME - BODIES WITH SONIC CORNER

As stated previously, the condition to be satisfied for bodies with a
single convex corner &t which sonic velocity is reached is simply given
by

S = Srven

The variation of ..s'* wvith € for a typical body displays none of the
cadically nonlinear behavior of the smooth body case. Through the use
of a quadratic interpolation, the criterion I(J':-J‘.)/S‘. < 0% vas
satisfied in a relatively small number of iterations. For the special
case of & body with zero curvature up to the corner, i.e., flat-faced
cylinder, cone with detached shock weve, no iteration is required in a
strict sense since the relation is precisely linear. Further details
are given under Applications.




6. INVERSE PROCEDURE

6.1 Iterative Method

Solution of the governing system of total differential equations yields
4%, ///J) , JJE (f) and their derivatives. Since 4K , 8K ,A%)
and 5&//%,/) have been previously given, one may now determine Jé} R
2 ) % » £ /o Ja _/a as functions of ' . If one chooses
to follow a forma.l inverse procedure in calculating shock layer proper-
ties, 4 , 2+, &, & end & nust be evaluated. Hence X3/7) ,
Z (&8 2) and  5K&,77) are specified through use of Eq. (2-13). Finaelly

yx &, end J’,, are determined from the relations

P f+é[/cweﬂ*é")+ J ‘“ (6-2)
%~
d’-/
( L) ¢ (6-3)
Y= £ (6-1)

/0—4

Since the pressure relationship obtained by substituting BEqs. (6-2), (6-3)
and (6-4) into Eq. (6-1) is implicit in nature, an iterative solution is

-y

e
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required. Unfortunately, the solution has separate roots corresponding
to A7 S/, and switches roots along normals ( « = constant lines) cross-
ing the sonic line. The calculated flow field in this region is always
discontinuous since the expression does not allow a smooth transition
from a subsonic body point to a supersonic shock point. In addition,
(350 for the case of a flat-faced cylinder and the system of equations
becomes underspecified, i.e., only the .Z and Z* linear relations plus
Bernoulli equation are available for determining 2, JD ) Z{ ’ 4} . This
situation also arises when the system of equations is written directly in
cylindrical polar coordinates (e.g., Ref. 8) since only two approximating
functions are required.

6.2 "Linear" Method

Ref. 5 employs separate linear approximations for /4 and 7+ ;g),b
which leave the differential equations unchanged but lead to & simpler but
overspecified algebraic procedure for determining the flow properties,

i .e L d ,

#-=gagler Ao dg-¢l

37




For a sphere calculation, this situation does not occur if polar coordi-
nates (/”: é’) are used since the two terms collapse naturally to a
simpler expression, i.e., using /7= -2 S=RE and r=Fond , G
reduces to (FerB)f 4‘7“-2!,0)/?-'- Pewd T/R . Ref. 9 represents F
linearly thus decoupling the 7 term. This decoupling is not possible
when representing <5 "/?) linearly; therefore, vhile the original gov-
erning equations in either /72 or /7~ & coordinates are equivalent,
the integral approximations employed are not equivalent.

The foregoing considerations indicate that use of a formal inverse pro-
cedure in the present one strip calculation leads to camputational dif-
ficulties. Ref. 17 (two strip approximation) appears to circumvent this
difficulty by abandoning the formal procedure and employing quadratic
expressions involving values of the flow variables on the body, shock and
the intermediate center strip.

6.3 Gradient Method

The derivatives of the flow variables in the ' and /7 directions at the
shock and body may be expressed entirely in terms of quantities yielded
by the basic integration for d, / and Z!p; . This suggests a flow
field determination based upon a knowledge of these gradients involving
cubic approximations for three variables with the remaining variable
being recovered fram the Bernoulli equation and the entropy ﬁmction.*
An empirical procedure involving different cambinations of cubic fits led
to the use of the following system of equations (see Appendix I for the
derivation of the gradient functions):

?i;should be noted that an approximate higher order scheme involving
gradients is discussed in Ref. 5 in which the one strip differential
equations are modified with correction terms in an attempt to obtain
improved body and shock data.
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yZn Ja and 4‘; are determined using expressions of the form

Fo£ ) [ 305-0)-012(85) (&) |3

_[2(;15) o (& )+/‘°‘9]f(§?)

4; is subsequently determined from the Bernoulli equation with the
cubic representation (denoted by a prime) being employed in order to
fix the sign.

= (/)-L2-J°
%= (/% 4

Also

G
A

The aim of the foregoing procedure is to recover maximum information from
those elements of the solution which most closely agree with experimental
data. The usefulness of the gradient method will, of course, be dimin-
ished for those cases for which the shock and body values become less
accurate.
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CONSERVATION RELATIONS

A measure of the mathematical consistency of the gradient approach is
afforded by determining the extent to which conservation laws are satis-
fied throughout the shock layer region. It has been noted (Ref. 10) that
significant deviations in conservation of mass and momentum can occur in
flow fields obtained using the integral method.

Considering the control volume shown in Fig. 17, the conservation equa-
tions are given by:

. ' 75
43/.{ f/f{)? = (7)) /4:/3%7 (7-1)
Mamentum :
| 75)
2 s ' '
Lo gl WrgIf = (2m)| Jltpeons ki)l
I (7-2)

> /.é/a WIS /'/o'é' ]

-1




Energy:
IF)

kA TS = o) fplithe 2V sy

FIGURE 17

For an ediabastic flow process involving a thermally and calorically per-
fect gas, A = 2—’/‘;/0 (/A nondimensionelized using K”i ); therefore,
using Eq. (2-7), the integral form of the energy relation reduces to the
form of the mass conservation equation.

Defining
i)
- 7/ pdkrs
BF) = ZALETR (T4)
/fl‘{;uﬂ |

a
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) J

$95) = 2 [ [Zpees+pdi})roh "/‘//” ner] / » (15)
(4 P i%) %!

values of /77 end 47 have been camputed for a number of cases. The
results are presented in Figs. 18 through 20. The deviations noted are
primarily a consequence of the inverse procedure employed to recover the
flow variables.

T.1 Sphere Results

Fig. 18 presents a camparison of the deviations from mass conservation
resulting fram application of the "linear," iterative and gradient inverse
methods for A%=3, 6, 9. A single (AZf 6) curve is presented for the
iterative method. The break in this curve corresponds to the "double-
valued" region mentioned previously. From a practical standpoint, the
deviations occuring in the range corresponding to low supersonic Mach
numbers in the field (.8 <J <.9) are particularly significant in that
starting solutions for characteristics are derived from the flow field
results in this region. Suppression of errors which could subsequently
propagate into the downstream field is therefore necessary in this range.
In this respect, the gradient method provides a substantial improvement
over the other techniques. Conservation of mamentum deviations are also
significantly reduced through use of the gradient method (Fig. 19).

7.2 Flat-Faced Cylinder Results

As indicated previously, the need for two of the approximating functions
vanishes in the case of the flat-faced cylinder. A decision was made to
retain these relations in determining the flow field since the approxima-
tions consistent with this "linear" inverse method appear to have more
validity than the gradient method on the basis of results shown in Fig.
20. Since the accuracy of the gradient method is directly related to the
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validity of shock and body data, particularly "second-order" quantities
such as A and ol /54 , the deviations in /;5/J) may be interpreted as
an indication of shortcomings in the basic solution for this body shape
and at the given free stream conditions.




8.

APPLICATIONS

The success of the one strip integral method in predicting shock shapes
and surface pressure distributions has been established by previous in-
vestigators, excepting those cases where Ma is too close to unity or
vhere rapid changes in body curvature are involved. Unfortunately, little
information is available for determining the accuracy of the distribution
of flow properties across the shock layer [sonic line data (Ref. 11) and
interfercmetric ballistic range data (Ref. 12)].

In view of the preceding considerations, the results presented do not
include experimental data but are intended to typify the information
yilelded by the integral method.

8.1 Sphere

The variation of shock detachment distance with free stream Mach number
for d’= 1.k is given in Fig. 21. A sixth degree polynomial of the form

A a7 R I A P

vas fitted to the numerical data in order to provide accurate detachment
distances for intermediate Mach numbers (which are usable in the present
formulation to approximately five decimal places as initial é values).
A few cases were run for d’;‘ 1.k (e.g., for d’= 1.2 and A/ = 20,

€ = .0T3666) which displayed trends in accord with the results of other
theoretical methods. A plot of sonic point location versus A7, is also

included (Fig. 22). For A4 > k4, a crossplot indicated that the relation-

ship between € and S * becomes nearly linear. Fig. 23 presents the

et o o g i
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veriation of shock radius of curvature at the axis with A7, . The limit-

ing value of A’ as N, 1s significantly higher than the correspond-
ing result obtained by assuming a concentric shock wave, i.e. ,/ﬁ-/?-/-é" .

The distribution of flow properties across the shock layer was determined
by means of the gradient method. In particular, the variations of ©K5/7),
(577 end A7¢8s) eare shown in Figs. 2k, 25 and 26, respectively,
for AM=6 and /°= 1.k, The density plot displays the small P varia-
tion in the stagnation region which is the physical basis for a number of

approximate constant density solutions.

Fig. 27 gives a comparison of shock shapes derived through use of the
method of characteristics (with an integral method starting line) and
the integral method alone. The characteristic separating the sphere

(0 L8 g ) region of influence and the region additionally influenced
by the afterbody is indicated in order to illustrate the "illegal" dis-
turbance imposed in the integral method by change in afterbody geametry.

Typically, as the free stream Mach number is increased, the integral
rethod shock wave tends to be farther below the true shock location (as
defined by characteristics and experimemt) for *"/? >2 . It is interest-
ing to note that for a camplete sphere the integration into the super-
sonic regime continues smoothly until ' approaches 7-4 ,

A= s:'//?';,—;; . Below this point the normal to the sphere cannot inter-
sect the shock wave. For example, for A7,= 1000, the integration pro-
ceeded up to S = 3.13, i.e., 179.3° around the sphere!

8.2 Flat-Faced Cylinder

The parameters which control a given integration are

€ , 568, 8K), a%’é

L))
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For conical or wedge nose caps terminating in a sonic corner
(Berwemenr <8 S % ), the latter two parameters become fixed and
beccme directly proportional to the independent variebleS .* As a
result, no coupling exists between € and the gecmetrical parameters as
the integration progresses. The location of the body sonic point vwhich
serves as the only characteristic dimension remaining in the problem
therefore beccmes purely & function of €. Hence, & scaling is implied
vhich sllows one to fix the sonic corner redius, ¢ ¥ ) &t & prechosen
value employing & maximum of two integrations. The first integration
establishes the ratio

&

{'ﬂ

and the second integration serves to adjust /4 * to e convenient ref-
erence value using Z - /1’/;' o (in the present case, I; ¥ was chosen as
_ wnity). The latter operstion was found to be more convenient than one
involving & storage of all quantities to be scaled.

Since the accuracy of the integral method is directly related to the
approximations governing functional beheavior in the /7-direction, the
validity of employing results derived from local transonic solutions
(Ref. 16) within the framework of the computing procedures was checked
in the following manner. The scaling property of the flat-faced cylinder
case provided & means for determining the consistency of using the func-
tional form suggested by second-order transonic theory for the surface
velocity extrapolation formula at the cormer, i.e.,

Q-4 = crs™ &)’ cmawer

ﬁ reformulation in terus of the coordinate system employed is necessary
to handle cases for &< P& . In this instance, & would be replaced
by & corresponding variable.
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For 0</?7< / , this expression allows the upstream surface velocity
gradient to approach an infinite value at the corner (as dictated by
inviscid flow theory).

The success of the scaling procedure was influenced by the choice of the
exponent /7. For example, a value of /7 = ’(2 yielded & sonic corner
radius of 1.0000001 while a value of /7 = 2/5 (given by second order
theory) gave a "less precise" scaling, 4 *= 1.0000044. A weak depend-
ence upon /7 therefore exists. In addition, numericel determination of
/7 in an inverse fashion employing the last valid points computed near the
corner yielded a value of 0.4996. Finally, employing & cubic fit which
is in direct contradiction to the requirement that (a/#}i/o@ — @
as &€'—= O gives the poorest scaling, /"‘ 1.0004. =s=e

From a practical standpoint, the preceding arguments became scamewhat
academic if the integration is not continued past the sonic corner since
upstream flow field results are not significantly affected by the fitting
procedures.

Owing to the steepening of the velocity gradient near the corner, a step
size reduction was introduced as the corner was approached. This effect
became perticularly critical as the Mach number was decreased. The reduc-
tion criterion was based on a test of o/dé/o{s' rather than 4." owing to
the rapid divergence of the velocity gradient expression within the span
of & few integration steps. Sequential interval reductions fram AS = .01
to AS = .0001 (based on AR = 1.0) were employed in same cases.

The scaling relationship vwhich exists for flat-faced slabs or cylinders
serves an awxiliary purpose, namely, that of program checkout (excepting




those terms which vanish when A2 —~a). If the "two integration pro-
cedure" does not place the sonic point precisely at a chosen location,
then an error exists in the program.

8.3 Nose Caps

Having determined the flow field for a smooth nosed configuration, one
may proceed to generate results for a family of nose "caps" provided that
they terminate in a sonic corner. Modification of extrapolation proce-
dures near the sonic point is necessary, however, to allow for the proper
functional behavior in this neighborhood, e.g., infinite upstream %;
gradient.

The sphere provides a useful example for illustrating the preceding con-
siderations. Representing the sphere shock standoff distance at a given
/17” and d’ by = , each integration for a given & <€ winl produce
results corresponding to a spherical cap. A few iterations are necessary
in order to determine the value of & corresponding to a specified corner
location; however the convergence is relatively rapid. A comparison of
results for camplete and truncated spheres is shown in Fig. 28. The
llewtonian value is also included for comparative purposes.

8.4 Two-Dimensional Results

Flat-Faced Plate

Employing the step size reduction procedure used in the axisymmetric case
near the corner, no difficulty was encountered in verifying the € -scaling
property for the two-dimensional flat-faced body, i.e., only two integra-
tions were required to fix the sonie point precisely at the corner of the
body. Figs. 29 and 30 give a comparison of shock shapes and surface pres-
sure and velocity distributions for the flat-faced plate and cylinder.
Referring to Eq. (3-2) for A+,
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For 2&,, > &p therefore, the shock curvature at the axis is greater
for the axisymmetric case. This inequality was satisfied for the cases
camputed, e.g., for /1{: 5.8, 2(.49662) > .87025.

Circular Cylinder

On the basis of preliminary evidence, the convergence procedure initially
devised for the axisymmetric case was inadequate for handling two-
dimensional bodies, i.e., circular cylinder.

The principal factor involved was the singular behavior of 0// s for
the seme range of & in which the velocity gradient displays erratic
behavior. Setting tests which restricted shock curvature® (see Fig. 10)
resulted in successful runs at discrete Mach numbers (e.g., ML= 4, 5).
However, the iteration displayed generally erratic and inconclusive be-
havior. For the converged runs, the shock wave displayed points of
inflection in the supersonic regime which could not be ascribed to known
physical behavior.

It is worth noting that the USSR cylinder results (Ref. 2) were presented
primarily for the two and three strip calculations with only surface pres-
sure date given for the one strip version (indicating the possibility of
inadequacy of the one strip results). In addition, no other reference

was found which presented two-dimensional integral method results of any
description.

*For the axisymmetric case, Ref. 5 proposed a o,’(/oé' test to handle
situations where the initial & guess is extremely poor.

)
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9.

CONCLUDING REMARKS

In the present report emphasis has been placed on the discussion of a
representative formulation of the blunt body integral method which in-
cludes sufficient detail to delineate the numerical pitfalls involved

as well as same practical limitations in its application. Particuler
importance was placed on the flow field determination in order to provide
an accurate description of the flow properties across the shock layer.
The gradient method was employed (for smooth bodies) since its applica-
tion insured compatible tangential and normal flow property gradients at
the shock and body vhile minimizing deviations in conservation of mass
and momentum in the shock layer.

In the course of the investigation, a previously unreported feature of
the method came to light, namely, that for the flat-faced cylinder case,
the two point boundary value problem reduces to one involving a single
integration of the system of governing equations. This feature obviously
affords a significant reduction in camputing time.

Regarding the practical utilization of the method, rational flow field
data have been generated for a range of blunt-nosed axisymmetric configu-
rations employing a cambination of the integral method and the method of
characteristics. Application of the latter method was found necessary
in order to maintain downstream accuracy.
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APPENDIX A

FLOW VARIABLE GRADIENTS AT SHOCK AND BODY

The governing equations expressed in body oriented curvilinear coordinates

are given by

= o7 P NS
s P,
4t Bh3 -4 50 B

Shock Gradients

(A1)

(2)

(43)

(ak)

The oblique shock equations serve as auxiliary relations in obteining flow

variable gradients immedietely hehind the shock wave.

In addition, geo-

metrical considerations (Fig. Al) enable one to express «§-derivatives in

terms of /7= and ;derivatives, i.e., letting ;‘ﬁ=g‘5-/,

(da' wa;( (Z’%f '{i;: e (9/7)

or

&) Bl % )]

(45)
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FIGURE Al

Use of this operator in Egs. (Al), (A2), (A3) and (A4) results in an
;lzebraic sys;;m of four equations for the gradients (a/a/aﬂ)‘ , (a.%ﬂ): ,
[ /;/9); , ( Oéﬂ): One subsequently obtains:

20) = & [Fom2 £ -9~ °¢3)
C’”.r < [veety —( &f/d;)‘l (#6)

2

&)= 4(8)r sabnlF- 28] @
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The data required to evaluate these gra.dients are /7, s / g,

/, 7, Jd (note that F ;;f*efr;’ and /e=-oa7 )

One may now express the ' -derivatives in terms of the /7-derivatives
through use of the original equations.

64 -l #4(34) -5 4-8Z)) o

&) | F| Yo B

(A1)
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[Alternative expressions may be determined through use of the equations

~p +v3/em = S

Body Gradients

Expressions for (ap_ ’5”), and ( aJ?éﬂl are obtained by setting /7 =O
and 1/4; = O in the governing equations.

2

22) = £4
(6’90 LR (hak)

(ad‘) (% /)a/% ,zywa 0,’1%/5, (A15)

vhere 0/4;,/4@ is assumed known. Note that the coefficient of the sur-
face velocity gradient vanishes at the sonic point indicating that similar
behavior in the integral method is independent of the formulation and
approximations employed.
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The remaining normal derivetives are determined employing a procedure
outlined in Ref. 15. Consider a function f/(d; Z) vwith J¢E 7)) and
Z',7”) defined as coordinatec tangential and normal, respectively, to
the streamline direction. One may therefore write

f = o _ S o
=Y o o T I

Assuming that f -=/( Z; / ) ( / = shock wave angle at intersection of
shock and streamline 27 = constant), the expression reduces to

of o of o or
o a//(a//dz'

dt

f

)
|

FIGURE A2

From continuity considerations
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At the surface of the body, Z=O ,

&)-(3)-w241% )5 %]

Setting / = //%r

A _ P [ aronplises - 2) }
d/[ /0{ 7~ M ?/ /)( LW%“/ +/)m//

Therefore
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ILetting }' represent any flow variable, the angle between the curve
f = constant and the ¥ -axis is given by

d} =4 +z‘o'o"[—(§$=?7 ég)}

Hence, this angle may be determined at the shock and the body employing
the derivatives given above.
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APPENDIX B

BEHAVIOR OF THE SURFACE VELOCITY GRADIENT EXPRESSION IN THE NEIGHBORHOOD
OF THE SONIC POINT

A computing scheme was devised which was intended to eliminate the need
for curve fitting and extensive & refinement required to cross the sonic

point. It was based upon the following assumptions:

a. Application of L'Hospital's rule to the equation for the surface
velocity gredient yields a well behaved expression, exact at
S=S¥ for €=,

b. This expression approximates the correct value of a/%o/b@ in
»
some finite neighborhood of ' overlapping the region in which
the value calculeted by the conventional expression is still valid.

¢. The expression is less sensitive to the initial value, & , than
the original gradient equation.

The scheme involved switching to the L'Hospital or "L" value just before
0"50, 7 begins to behave erratically and switching back on the other side
of the sonic point, e.g., Fig. Bl.

4%, N
dS o}
~
} =
2, N
ds
\>
L VALl}
>
1 5
N T
FIGURE Bl

-
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Switching expressions resulted in a temporary instablility in the inte-
gration which recovered in the supersonic region. Characteristically,
the integration process displaeyed strong "recovery" ability in that an
erratic value introduced by stepping too close to 6‘* introduced only
a temporary perturbation which was rapidly damped such that downstream
results were relatively unaffected.

Mathematical Considerations

The denominator of the surface velocity greadient equation is given by

D= &f %8, (2)
won A= )0 o b md ()
Bm(r-497 50 1o <=/
-
Lm -4 B[54 2] %‘*ﬁ{%{"'f“@”&] ()

Therefore

X LAt )

Assuming that the surface velocity gredient has a finite, nonzero value
at S -J', the preceding considerations indicate that application of
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L'Hospital's rule yields an expression which is well behaved in the neigh-
borhood of the sonic point. More explicitly,

Sy S (B4)

Proceeding in an admittedly nonrigorous fashion, Eq. (B4) was treated as
a quadratic expression for oéf &4 (velid, hopefully, at S'=O and
J-J’). Subsequent evaluation of this expression indiceted that one root

gives the origin value correctly and the other root gives the sonic value
correctly.

Carrying out the outlined scheme entailed a considerable amount of work in
differentiating and expending the A/ expression. Owing to its length (as
well as its limited applicability) the resultant equation is not included
here; however, a plot of the variation of the two roots 4 and 42 is
given for & typical case, Fig. B2.

The proposed scheme was not adopted in view of the fallowing considerations:

&. The <; value did not approximate % with sufficient accuracy
in a large enough neighborhood of the sonic point.

b. The "switching transients" were more severe in some cases than

E
erratic functional behavior due to stepping too close to S .




Ca

The Z value was sufficiently sensitive to the value of & to
require almost the same degree of & refinement. This sensiti-

vity is indicated in terms of o//V/o@ and 0266 in Figs. B3
and B4, respectively. The practical advantage of utilizing the
4 expression is thus lost.

The sheer bulk of the £ expression countributed significantly
to computing time expended.
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